Learning to distinguish valid textual entailments
نویسندگان
چکیده
This paper proposes a new architecture for textual inference in which finding a good alignment is separated from evaluating entailment. Current approaches to semantic inference in question answering and textual entailment have approximated the entailment problem as that of computing the best alignment of the hypothesis to the text, using a locally decomposable matching score. While this formulation is adequate for representing local (word-level) phenomena such as synonymy, it is incapable of representing global interactions, such as that between verb negation and the addition/removal of qualifiers, which are often critical for determining entailment. We propose a pipelined approach where alignment is followed by a classification step, in which we extract features representing high-level characteristics of the entailment problem, and give the resulting feature vector to a statistical classifier trained on development data.
منابع مشابه
Automatic Learning of Textual Entailments with Cross-Pair Similarities
In this paper we define a novel similarity measure between examples of textual entailments and we use it as a kernel function in Support Vector Machines (SVMs). This allows us to automatically learn the rewrite rules that describe a non trivial set of entailment cases. The experiments with the data sets of the RTE 2005 challenge show an improvement of 4.4% over the state-of-the-art methods.
متن کاملSemEval-2010 Task 12: Parser Evaluation Using Textual Entailments
Parser Evaluation using Textual Entailments (PETE) is a shared task in the SemEval-2010 Evaluation Exercises on Semantic Evaluation. The task involves recognizing textual entailments based on syntactic information alone. PETE introduces a new parser evaluation scheme that is formalism independent, less prone to annotation error, and focused on semantically relevant distinctions.
متن کاملLearning to recognize features of valid textual entailments
This paper advocates a new architecture for textual inference in which finding a good alignment is separated from evaluating entailment. Current approaches to semantic inference in question answering and textual entailment have approximated the entailment problem as that of computing the best alignment of the hypothesis to the text, using a locally decomposable matching score. We argue that the...
متن کاملSyntactic Testsuites and Textual Entailment Recognition
We focus on textual entailments mediated by syntax and propose a new methodology to evaluate textual entailment recognition systems on such data. The main idea is to generate a syntactically annotated corpus of pairs of (non-)entailments and to use error mining to identify the most likely sources of errors. To illustrate the approach, we apply this methodology to the Afazio RTE system and show ...
متن کاملParser evaluation using textual entailments
Parser Evaluation using Textual Entailments (PETE) is a shared task in the SemEval-2010 Evaluation Exercises on Semantic Evaluation. The task involves recognizing textual entailments based on syntactic information alone. PETE introduces a new parser evaluation scheme that is formalism independent, less prone to annotation error, and focused on semantically relevant distinctions. This paper desc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006